宇历三年的时候,离宗和连宗很罕见的达成了📋🙑全新的🙻🏩共识。🗪🞞
一个📯🞗🔏公式,在离宗算理和连宗算理之中,具备完全一🙻🏩致的内蕴的话,那么,就可以说,这个公式,具备“绝对性”。
这种“绝对性”,毫无疑问,给🌅☐⚋予了离宗某🖇种“希望”。
对于他们来说,这简直就是不周之算的灭世一击下,所🃊🖆🐙能找到的最后救赎与唯一福音。
“绝对性”的存在,或许就是在表🐢明,数学实体是在不同的数学公理系统里面普遍存在的。
而如果是这样的话,这个数☲学实体本身,或许就具有“实际完备🖏👧”的性质。🕝
这是他们最后的希望了。
或许📯🞗🔏他们需要寻找到一条新的道路,来探索出这😰个数学实体的性质⛰。
在🌩🁬这一点上,冯落衣与歌庭派的目的是出奇的一致。
他🌩🁬们📯🞗🔏甚至暂且放下了些许分歧,共同探索这一领域🌵🃘。
而在这一过程之中,海霆真人也🌅☐⚋终于崭🗕🛢🞀露头角。
自从连宗证明直觉主义逻辑☲不比歌庭派的经典逻辑安全之后,他就好像变了个人一样,沉默而寡言。
而在黎京首创之中,他自🏂闭的倾向就更严重🖇了。
但是,这并不妨碍🝖🗍他作为一个算学🐢家,继续发光发热。
他从苏君宇的连续统🗺♂研究之中受到启发,引入了冯落衣在无限公理中🃴研究良基集合的成果,创立了全新的流派构造主义。
在某个理论内,以有穷个符号,所定义之一切实体🌵🃘,直到♜反射序🖏👧列的高度遍历“所有序数的序数”,便是一个可构造类。
而可构造公理,便是宣告,良基序列下合法集合所构成的总体,与“可🀸构造性集合”🇯,是相等的🌬🂇🌨。
他继承了算君“算学是被构造产物”的思想,却容纳了算君所厌恶的集🀸合论,并且在冯落衣良基集合的基础上完成了初步的安全性证明。
定义即构造,构造即证明,证明即路秩。
也正是🜦🄘因为如此,他在算器理论也小有突破,进入千机阁的视野🖏👧🖏👧之中。
歌庭派对此有些惊恐。
冯落衣与图灵👎的存在【或许还可以算上王崎】,使得千机阁这个万法门分支门派,一直都是离宗的后花园。
也曾有连宗修士走入过那🏂里,甚至有算君这种连宗总头目开发出了平行的算器理论。